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A B S T R A C T

This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using

moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five

commonly used vegetation indices as post-hurricane forest damage indicators was investigated through

statistical analysis. The Normalized Difference Infrared Index (NDII) was identified as the optimal

damage indicator among these vegetation indices. An approach for detecting forest damage at a regional

scale, without relying on ground inventory or sampling, was designed and validated. The validation

showed that the relative change of pre- and post-hurricane NDII was linearly related to the damage

severity estimated by the ground inventory with the coefficient of determination 0.79. This approach

was applied to evaluate forest damage severity and the impacted region caused by Hurricane Katrina.

Published by Elsevier B.V.
1. Introduction

Hurricanes are one of the major natural disturbances to forest
ecosystems in the southeastern United States. A severe hurricane
can extensively influence the composition, structure and succes-
sion of forests, and consequently affect the terrestrial carbon sink
(Foster, 1988; Boutet and Weishampel, 2003). From the perspec-
tive of fire management, the most immediate impacts of
hurricanes are a massive conversion of living forest biomass to
dead fuel (McNulty, 2002), an increase in fuel bed depth (Miranda,
1996), and decrease in dead fuel moisture (Gill et al., 1990; Loope
et al., 1994). Previous studies have indicated that the occurrence
and intensity of wildland fires increase in hurricane-impacted
areas in the years after landfall (Gardner et al., 1991; Hook et al.,
1991; Wade et al., 1993; Myers and van Lear, 1998; Liu et al., 2003).

The increased frequency and severity of resulting forest
disturbances in recent years requires rapid and accurate regional
forest damage assessment to support post-hurricane forest
management, hazardous fuel management, post-hazard relief
activities, and government compensation claims. Fuel loading is a
key parameter in fire danger rating systems, which are not
designed to assess increment of fire risk in hurricane-impacted
forest regions. As a result, fixed fuel models in the National Fire
Danger Rating System (NFDRS) (Schlobohm and Brain, 2002)
introduce uncertainties in fire risk estimation due to the high
spatial and temporal variability of hurricane-induced dead fuels.
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Therefore, fuel models need to be adjusted to account for such
variability, which require an efficient approach to measure abrupt
fuel changes. Post-hazard relief activities (e.g. logging and fuel
reduction) also require knowledge of the location and severity of
forest damage to effectively carry out their missions (Stanturf et al.,
2007). A map of forest damage severity also provides a objective
evidence for verifying post-hurricane compensation claims and
related government decisions.

Few studies have focused on satellite remote sensing of storm-
induced forest damage. No operational, well tested and validated
satellite remote sensing algorithm has been developed to rapidly
assess post-hurricane forest damage and the severity in terms of
defoliation, branch loss, stem loss and other changes in forest
structure. Most studies to date have been based on passive optical
remote sensing, in which the change or standardized change of
various vegetation indices are adopted as damage indicators with
few efforts to evaluate their quantitative relationship with forest
damage at the pixel level, and with few comparative analyses on
the performance of these vegetation indices. Studies on selecting a
proper indicator for estimating post-hurricane forest damage have
not been reported. Ramsey et al. (1997) analyzed forest damage
caused by Hurricane Andrew 1992, using advanced very high-
resolution radiometer (AVHRR) multi-temporal images. They
found that the regional averaged Normalized Difference Vegeta-
tion Index (NDVI) change followed damage severity, but did not
provide quantitative relation of NDVI change and damage severity.
In their later research, they inferred that damage extent and
information on damage severity and type might be extracted from
the NDVI change (Ramsey et al., 1998). Ayala-Silva and Twumasi
(2004) investigated forest damage caused by Hurricane Georges
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Table 1
Summary of studies on post-storm forest damage assessment.

Storm Time Sensors Channels Indicator Change detection Literature

Hurricane Andrew 08/1992 AVHRR Red, NIR NDVI UID Ramsey et al. (1997, 1998, 2001)

Hurricane Georges 09/1998 AVHRR Red, NIR NDVI UID Ayala-Silva and Twumasi (2004)

Typhoon Herb 07/1996 SPOT Red, NIR NDVI UID Lee et al. (2008)

Typhoon Songda 09/2004 ASTER Red, NIR, SWIR NDVI, NDII, LAI UID Aosier and Kaneko (2007)

Ice Storm 1994 Landsat TM Red, NIR NDVI UID Stueve et al. (2007)

Ice Storm 01/1998 Landsat TM Red, NIR NDVI UID Millward and Kraft (2004)

Partial Harvesting 2000-2004 Landsat TM NIR, SWIR, Visible NDVI, TCW UID Jin and Sader (2005)

Hurricane Katrina 08/2005 Landsat TM/MODIS NIR, SWIR, Visible Non-photosynthetic

vegetation

Spectral mixture

analysis

Chambers et al. (2007)

Hurricane Fran 09/1996 SLICER NIR laser Canopy height – Boutet and Weishampel (2003)

Hurricane Lothar 12/1999 ERS SAR C-band (6 cm) InSAR coherence Classification Dwyer et al. (1999) and

Wiesmann et al. (2001)

CARABAS-II SAR VHF-band (3.3–15 m) Backscattering amplitude Linear regression Fransson et al. (2002)
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1998 using the standardized change of NDVI (DNDVI) derived from
AVHRR images. They indirectly proved that regional averaged
DNDVI was linearly related to the distance of the hurricane track.
Aosier and Kaneko (2007) studied tree damage caused by Typhoon
Songda 2004 using advanced spaceborne thermal emission and
reflection radiometer (ASTER) images at local scale. They found
that the NDVI change for damaged trees was greater than the
change of adjusted Normalized Difference Infrared Index (NDII).
Their finding was inconsistent with prior studies, in which
vegetation modifications were better detected by NIR-SWIR based
vegetation indices than NIR–Red based vegetation indices (e.g.
Ceccato et al., 2001; Wilson and Sader, 2002; Sader et al., 2003;
Bowyer and Danson, 2004; Jin and Sader, 2005).

The purpose of this paper is to evaluate the performance of
commonly used vegetation indices in identifying post-hurricane
forest damage, and to develop an algorithm to rapidly assess
damage severity in hurricane-impacted forest regions. The specific
objectives of this study are to (1) identify a reliable indicator for
detecting impacted forest region and damage severity, (2) develop
an algorithm for rapid post-hurricane damage assessment, and (3)
validate this algorithm. In the next section, the approaches and
satellite sensors used for detecting post-hurricane forest damage
are reviewed. Datasets and methods are introduced in Section 3.
Section 4 presents the results, including the identification of a
proper damage indicator, development of a rapid assessment
algorithm, and its application towards evaluating forest damage
caused by Hurricane Katrina. Validation results are discussed in
Section 5.

2. Existing approaches for estimating post-hurricane forest
damage

The assessment of a hurricane-impacted forest region and
forest damage severity has been traditionally based on the ground
survey, aerial photography, ecological models, storm models, and
topographic exposure models or combination of these methods
(Sheffield and Thompson, 1992; Wade et al., 1993; Boose et al.,
1994; Kovacs et al., 2001; McNulty, 2002; Clark et al., 2006; Jacobs,
2007; Kupfer et al., 2008; Wang and Xu, 2009). Research on
satellite remote sensing of hurricane-induced forest damage
started in the 1990s, because satellite data have high temporal
and spatial resolution, and extensive coverage relative to ground
and aerial measurements. The primary literature from peer-
reviewed journals and government documents were summarized
in Table 1. These previous approaches can be classified into four
categories based on the respective physical principles used in
detecting the forest canopy: (1) detection based on changes in
chlorophyll content (Ramsey et al., 1997, 1998, 2001; Millward and
Kraft, 2004; Ayala-Silva and Twumasi, 2004; Jin and Sader, 2005;
Aosier and Kaneko, 2007; Stueve et al., 2007; Lee et al., 2008), (2)
detection based on changes in leaf water content (Jin and Sader,
2005; Aosier and Kaneko, 2007), (3) detection based on spectral
mixture analysis (Chambers et al., 2007), and (4) detection based
on structural changes of damaged forests (Dwyer et al., 1999;
Wiesmann et al., 2001; Fransson et al., 2002; Boutet and
Weishampel, 2003). Approaches in category 1 and 2 use NDVI,
NDII, or variations of NDVI and NDII as damage indicators. The
image differencing method is used to derive the change of damage
indicators before and after a hurricane. Most studies adopted
methods in category 1, since NDVI is a well-known and most
popular vegetation index. Few studies are in category 2 despite
much evidence indicating that NDII is more sensitive to vegetation
modifications. Approaches in both categories are relatively simple,
straightforward, and easy to implement and interpret for large-
scale investigations. However, they are sensitive to errors in image
geo-registration, sensor view geometry and vegetation phenology.
NDVI is easier to saturate over dense canopies than NDII because
red bands have weaker penetration capability than SWIR bands
under the clear-sky condition. Since regions that are prone to the
hurricane hazard usually have relatively dense canopies, NDVI-
based indicators are more sensitive to the saturation problem. The
application of spectral mixture analysis was reported by Chambers
et al. (2007), which demonstrated a potential way to retrieve non-
photosynthetic vegetation (i.e. wood, dead vegetation and surface
litter). Their approach relied on the endmember classification
based on high-resolution satellite data and field samples. Studies
based on structural changes of post-hurricane forests are more
preliminary. Synthetic Aperture Radar (SAR) coherence data has
been shown effective on identifying forest and non-forest areas
based on various classification techniques (Floury et al., 1997).
However, few studies reported the quantitative assessment of
post-hurricane forest damage.

3. Data and methods

3.1. Post-Hurricane Katrina field inventory in the

De Soto National Forest

The De Soto National Forest (De Soto NF) is located in southern
Mississippi. The De Soto NF encompasses 1532 km2 (378,538
acres) of upland forest and bottomland forest, and is managed by
the United States Department of Agriculture (USDA) Forest Service.
The sub-tropical climate in the De Soto NF is characterized by mild,
short winters and hot, humid summers (Kupfer et al., 2008). High
precipitation is evenly distributed throughout the year. The
topography is characterized by gently sloping uplands and
floodplains.

The De Soto NF includes the Chickasawhay and De Soto
Districts. Both of these districts are dominated by longleaf pine
(Pinus palustris) forest, representing 44% of the forest cover



Fig. 1. Forest health evaluation stands and land cover type. Yellow dots are locations of Forest health evaluation stands. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)
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(Windham, 2005). Slash pine (P. elliottiii) and hardwood covers 23%
and 8%, respectively. A combination of loblolly (P. taeda), shortleaf
(P. echinata) and mixed yellow pine represents 14%. Pine and
hardwood mixtures cover 10%. Bottomlands are dominated by
hardwoods and sweetgum (Liquidambar styraciflua). Uplands are
dominated by longleaf pine, loblolly pine, shortleaf pine and slash
pine.

Hurricane Katrina landed as a category 3 hurricane with
sustained wind speeds of 180–200 km h�1 on August 29 2005 in
southeast Louisiana (Stanturf et al., 2007). Its eye passed within
8 km of the western boundary of the De Soto NF (Bryant and
Boykin, 2007), and the storm’s strong winds caused widespread
forest damage in Mississippi. The USDA Forest Inventory Analysis
(FIA) reported that 8300 km2 National Forests in Mississippi
were impacted. The De Soto NF suffered forest damage over
2270 km2 of land. The De Soto NF experienced storm winds for
several hours with maximum sustained winds averaging 135–
160 km h�1 and peak gusts of 145–225 km h�1 (Kupfer et al.,
2008).

The USDA Forest Service conducted forest health evaluation of
the De Soto NF one month after the hurricane landfall. A total of 54
plots (405 m2/0.1 acre per plot) within 18 separate stands were
examined, which provided a representative range of hurricane
damage from light to heavy levels (Meeker et al., 2006). The
hurricane damage was then classified using four damage
categories, including severe damage, moderate damage, light
damage and no damage. The percentage of damaged trees in these
four categories was calculated for each stand, and used as ground
truth data in this study. The locations of these 18 stands are shown
in Fig. 1 (yellow dots), overlaid with the MODIS IGBP land cover
types (2004). The land pixels covered by evergreen needle-leaf
forest, evergreen broadleaf forest, deciduous broad-leaf forest,
mixed forests and woody savannas were studied in this research.
Out of 54 plots, 20 plots were identified as evergreen needle-leaf
forest; 22 plots were covered by evergreen broad-leaf forest; 1 plot
was deciduous broad-leaf forest; 9 plots were dominated by mixed
forests; and 2 plots were woody savannas.

3.2. MODIS products

The MODIS Nadir BRDF-Adjusted Reflectance (NBAR) Product
(MOD43B4) contains visible and shortwave infrared (SWIR)
surface reflectance adjusted to nadir views with a resolution of
1 km at the mean solar zenith angle of each 16-day period (Schaaf
et al., 2002). This product provides the surface spectral reflectance
as it would have been measured at ground level without
atmospheric scattering or absorption. The correction scheme used
for the NBAR product compensated for the effects of atmospheric
gases, aerosols and thin cirrus clouds. Since the BRDF and
atmospheric effects have been removed from the MODIS NBAR
product, the MODIS NBAR product is more stable and consistent
than other reflectance products for observing vegetation status.
Therefore, it is an optimal choice for monitoring vegetation change
on land surfaces across broad spatial scales (Coppin et al., 2004). In
this study, the MODIS NBAR product was adopted to derive NDVI,
Enhanced Vegetation Index (EVI) and NDII. The Leaf Area Index
(LAI) and Fraction of Photosynthetically Active Radiation (Fpar) in
the MODIS LAI and FPAR product (MOD/MYD15A2) were used to
derive the change of LAI and Fpar caused by hurricanes. Forest
areas were identified by the IGBP land cover type in the MODIS
land cover product (MOD12Q1). All these MODIS products were
obtained from the LP DAAC, the EOS Data Gateway (EDG).

3.3. Change detection methods

One of the primary challenges to detecting large-scale abrupt
vegetation modification is to eliminate or reduce errors caused by
vegetation phenology (Zhang et al., 2003). Furthermore, varia-
tions caused by atmospheric effects, the BRDF effect and soil
reflectance before and after change events constitute noise for
detecting vegetation modification. Using the georegistered
MODIS NBAR product eliminated most noise caused by atmo-
spheric effects and BRDF effect. First, the CLEAN algorithm
(Roberts et al., 1987; Baisch and Bokelmann, 1999), a nonlinear
deconvolution approach based on Fourier transform theory, was
used to fill in missing or low quality observations in the time series
of vegetation indices (2003–2006) for each 1 km grid cell in the
focus region.

Fig. 2 shows an example of estimated missing NDII observations
within a NDII time series. The missing data were filled with the
estimated values (solid dots) derived from the CLEAN algorithm.
Then, the Fourier transform was used as a high-pass filter to
separate phenological signals (low frequencies) and the signals
caused by forest damage (high frequencies). Fig. 3 is an example of
a complete NDII time series (solid line), its seasonal component
(dash-dotted line) and the seasonally detrended disturbance
component (dotted line). Finally, the seasonally detrended
vegetation indices were subtracted using the Univariate Imaging
Differencing (UID) method to derive the change in vegetation
indices before and after a hurricane.



Fig. 2. Estimated missing NDII observations (solid dots) within an incomplete NDII

time series.

Fig. 3. Decoupling a NDII time series. Complete total NDII time series (solid line), its

seasonal component (dash-dotted line) and the seasonally detrended disturbance

component (dotted line).
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The percentage of damaged tree pixels was derived for
individual damage indicators (DVIs) to represent the overall
performance of three vegetation indices. It was defined as the
percentage of tree pixels with DVI values greater than the
corresponding damage threshold. The damage thresholds were
defined as DVIþ d, where DVI and d were the respective mean and
mean absolute deviation of DNDII, DNDVI or DEVI for undisturbed
pixels within the impacted region (those within the red box in
Fig. 4(a)) in 2003, 2004 and 2006. The undisturbed pixels were
defined such that their DVIs were within the range of DVIall � dall,
where DVIall and dall were the respective mean and mean absolute
deviation of DNDII, DNDVI or DEVI for all pixels in the same region
in 2003, 2004 and 2006. The mean absolute deviation was adopted
as a measure of dispersion rather than the standard deviation
because it was more resistant to outliers (Huber, 1981).

The damage level thresholds, which defined damage levels,
were computed using the histogram of the damage indicator. Two
thresholds were selected at first. Then, maps of damage indicator at
three damage levels were separately inspected. The fourth damage
level was then identified according to the spatial continuity of the
selected three damage levels.
3.4. Commonly used vegetation indices

The NIR–Red spectra based vegetation index is the NDVI
(Eq. (1)) or its variations, e.g. EVI (Eq. (2)):

NDVI ¼ ðNIR � RedÞ
ðNIR þ RedÞ (1)

and

EVI ¼ G� ðNIR � RedÞ
ðNIR þ C1 � Red� C2 � Blueþ LÞ (2)

where Red and NIR are the reflectance at 0.65 and 0.86 mm for
MODIS, respectively; Blue is the reflectance at 0.47 mm for MODIS,
and C1 = 1, C2 = 7.5, L = 1, G = 2.5. The NDVI separates green
vegetation from other surfaces because of chlorophyll absorption
in the red spectra and reflection in the NIR spectra (Tucker, 1979).
Thus, high NDVI values indicate high leaf biomass, canopy closure,
leaf area (Sellers, 1985; Jasinski, 1990) and the amount of
photosynthetically active green biomass. NDVI cannot differenti-
ate very dense canopy from dense canopy due to the limited
penetration capability of reflected red spectra, which is referred to
as the saturation problem. The Enhanced Vegetation Index (EVI) is
based on chlorophyll absorption with a correction for the effect of
atmosphere and soil reflectance (Huete et al., 1999). It is more
sensitive than NDVI in high biomass regions. In Eq. (2), the aerosol
resistance term used the blue band to correct for aerosol influences
in the red band. By using the canopy background adjustment
factor, L, the EVI is insensitive to most canopy backgrounds except
for snow.

Estimation of vegetation water content typically utilizes signals
from liquid water absorption channels in the SWIR spectra and
contrasts them with signals from channels insensitive to liquid
water in the NIR spectra. Several indices based on SWIR and NIR
reflectance have been developed such as NDII (Eq. (3)) (Hardisky
et al., 1983; Hunt and Rock, 1989):

NDII ¼ ðNIR � SWIRÞ
ðNIR þ SWIRÞ (3)

where SWIR is the reflectance at 1.24, 1.65 or 2.13 mm for MODIS.
Studies have shown that SWIR–NIR based indices are related to the
weight of water per unit area, or the vegetation water content
(Ceccato et al., 2001; Bowyer and Danson, 2004). In this study, we
adopted the 2.13-mm channel, due to the large amount of missing
observations caused by the serious stripping issue in the MODIS/
Aqua 1.65-mm channel (Wang et al., 2006).

Leaf area index (LAI) is defined as one-sided leaf area per unit
ground surface area for broadleaf trees, and half the total needle
area per unit ground surface area for coniferous trees. This is a
fundamental biophysical parameter that can connect the remotely
sensed reflectance of green vegetation with leaf biomass in the
canopy. The Fraction of Photosynthetically Active Radiation (Fpar)
measures the proportion of available radiation in the photo-
synthetically active wavelengths (0.40–0.70 mm) that a canopy
absorbs. LAI and Fpar can be remotely detected using MODIS and
MISR (Knyazikhin et al., 1998a,b).

3.5. Identification of a proper damage indicator

Vegetation indices that have been used for estimating post-
hurricane forest damage include NDVI, NDII, TCW (Tasseled Cap
Wetness) and LAI. Most studies to date have adopted vegetation
indices as damage indicators. Although various studies have
shown that vegetation modification is better detected by vegeta-
tion indices based on the NIR–SWIR reflectance (Ceccato et al.,
2001; Wilson and Sader, 2002; Sader et al., 2003; Bowyer and



Fig. 4. Relative reduction of NDII, NDVI, EVI, LAI and Fpar before (August 13, 2005) and after (September 14, 2005) Hurricane Katrina. (a) Damage severity mapped by FIA,

USDA Forest Service (Clark et al., 2006); (b) DNDII; (c) DNDVI; (d) DEVI; (e) DLAI; and (f) DFpar.
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Danson, 2004; Jin and Sader, 2005), little research has been carried
out to evaluate the sensitivity of commonly used vegetation
indices for assessing hurricane-caused forest damage. Therefore,
the performance of NDVI, EVI, NDII, LAI and Fpar was analyzed in
this study. The Tasseled Cap Wetness (TCW) was not included in
the comparison because NDII and TCW are highly correlated
(R2 > 0.98) (Jin and Sader, 2005).

First, we compared the maps of relative reduction of seasonally
detrended vegetation indices (DVIs) pre- and post-hurricane
Katrina with the damage severity assessed by the USDA Forest



Fig. 5. Histograms of DVIs within the major impacted region, during August 13 and September 14, 2003 (dotted line) and the same period in 2005 (solid line).
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Service, Forest Inventory and Analysis (Clark et al., 2006). The DVI
is defined as the ratio of a seasonally detrended vegetation index
(VI) reduction before and after the hurricane and the seasonally
detrended VI before the hurricane (Eq. (4)):

DVI ¼ ðVIaug13 � VIsept14Þ
VIaug13

(4)

In this study, the MODIS NBAR products observed on August 13,
2005 and September 14, 2005 were chosen as the observations
before and after Hurricane Katrina, respectively. These observa-
tions are hereafter referred to as the observations before and after
the hurricane. The DVIs derived from this period were referred to
as DVIs2005.

Then, we compared the statistical distributions of DVIs2005 with
the DVIs derived from the observations on August 13 and
September 14, 2003 (DVIs2003) and the same periods in 2004
(DVIs2004) and 2006 (DVIs2006) over the same forest area within
the major impacted region (severely and moderately damaged
region, assessed by Clark et al. (2006)). We assumed that (1)
DVIs2005 carried the forest damage information; and (2) DVIs2003,
DVIs2004, and DVIs2006 represented the status of DVIs without
major large-scale natural disturbances, since no hurricane landed
or other large-scale ecosystem disturbances occurred in this region
during those three years. The mean of DVIs (DVIs), shift amplitude
(the difference of DVI2005 and DVI2003), statistical dispersion
(Interquartile of Range (IQR) of DVIs2005), and percentage of
detected damaged forest pixels were calculated to evaluate the
sensitivity of DVIs as post-hurricane damage indicators. The
distribution of DVIs in 2003, 2004 and 2006 should have had a
symmetric bell-shape distribution with DVIs equal to or approxi-
mately 0, while DVIs in 2005 should have had a skewed
distribution because of large-scale forest damage. Shift amplitude
measures the sensitivity of an indicator to a hurricane’s impact on
the forest area. The shift amplitude increases when an indicator is
more sensitive to forest damage. Statistical dispersion indicates
the capability of an indicator to distinguish severity levels of the
forest damage. An indicator with a large dispersion can better
differentiate damage severity levels than other indicators. The
percentage of damaged forest pixels that an indicator can detect is
also indicative of that indicator’s overall capability to detect forest
damage.

4. Results and analysis

4.1. Post-hurricane damage indicator, DNDII

To visually compare the sensitivity of different indicators for
detecting forest damage, the DNDII2005, DNDVI2005, DEVI2005,
DLAI2005 and DFpar2005 are presented in Fig. 4(b)–(f), respectively.
Fig. 4(a) presents a damage severity map reported by the USDA
Forest Service (Clark et al., 2006), where the area within the black
box represents the major impacted region. The major impacted
region was later used to derive the statistical variables as
presented in Fig. 5 and Table 2. The impacted region, used to
derive damage thresholds, is the area within the red box in



Table 2
Statistics of DVIs in 2003 and 2005.

Statistical variables DNDII DNDVI DEVI

% DVIs2003 within [�0.4, 0.4] 99.3 99.9 99.3

% DVIs2005 within [�0.4, 0.4] 96.8 99.9 99.4

DVIs2003 (m2003) �0.03 0.0 0.0

DVIs2005 (m2005) 0.14 0.06 0.04

Shift amplitude 0.17 0.06 0.04

IQR of DVIs2003 0.101 0.056 0.090

IQR of DVIs2005 0.243 0.063 0.096

Damage threshold 0.04 0.02 0.03

% Damaged pixels 86.2 81.8 55.8
Fig. 6. Workflow of the rapid assessment algorithm.

Fig. 7. Forest damage severity at the pixel level.
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Fig. 4(a). On Panels (b)–(f), the magenta line represents the
hurricane track, and the red belt on the left is centered along
Mississippi River, where the major land cover type is croplands.
Because this study focused only on forested regions, it did not
consider other land cover types. To facilitate comparison, the same
scale was used – as shown in the color bars on Panels (b)–(f) –
where green and blue represent the increase of vegetation indices
after the hurricane, and yellow, orange and red indicate forest
damage caused by the hurricane.

The most distinct feature of abrupt canopy modification
detectable by optical remote sensing is the loss of green leaves,
which should be directly correlated with a decrease in LAI, and
indirectly correlated with a reduction of total chlorophyll and
water content at the canopy level. However, Fig. 4 (e) and (f)
showed that DLAI and DFpar could not detect the most impacted
regions as shown in Panel (a). One of the reasons was that the
MODIS Fpar product significantly underestimated the amplitude of
ground Fpar change (Huemmrich et al., 2005). The hurricane
impact identified by DNDII (Fig. 4b) was more consistent with
damage severity assessed by the USDA Forest Service, Forest
Inventory and Analysis (Clark et al., 2006) (Fig. 4(a)) than DNDVI
(Fig. 4(c)) or DEVI (Fig. 4(d)). The impacted area (in yellow, orange
and red) detected by DNDVI was smaller than DNDII, while DEVI
underestimated the impacted area and did not differentiate the
damage level as well as DNDII. Based on the above analysis, we
found that DNDVI, DNDII and DEVI could detect post-hurricane
forest damage to a certain extent, while DLAI and DFpar were
unable to identify the most damaged forest regions. Therefore, we
further analyzed only the statistical properties of DNDVI, DNDII
and DEVI.

The histograms (Fig. 5) of DVIs within the major impacted
region (within the black box in Fig. 4(a)) are DVIs distributions
with or without the hurricane impact. These distributions were
based on 13628 valid forest pixels within the DVIs range [�0.4,
0.4], which represented more than 99% of valid pixels, except for
DNDII2005 (96.8%). To facilitate the analysis, the histograms use
lines instead of conventional bar charts to represent the
distribution of DVIs. The relative decreases of the vegetation
indices during the examined periods were represented by DVIs > 0.
0. The solid lines with filled marks are the histograms of DVIs2005,
which illustrate the distribution of DVIs after the hurricane. The
dotted lines with hollow marks show the distributions of DVIs in
2003, which represent the distributions of DVIs without the impact
of large-scale natural disturbances. The histograms of DVIs in 2004
and 2006 were similar to the ones in 2003, therefore we only
presented the results from 2003 and 2005. The filled and hollow
marks show the number of pixels within the corresponding
intervals of DVIs, as they would be presented in the conventional
histogram with bars. Fig. 5(b)–(d) shows, respectively, the mean of
DVIs2003 and DVIs2005 (m2003 and m2005, respectively), the shift
amplitude between DVI2003 and DVI2005 (m2005–m2003), the 25%
and 75% quantiles of DVIs2005, the Interquantile Range (IQR) of
DVIs2005, and the damage threshold. Fig. 5(a) includes the
distributions of DVIs2003 and DVIs2005, as shown in Fig. 5(b)–(d),
to ease the comparison among DNDII, DNDVI and DEVI. To analyze
the distributions of the same DVI in 2003 and 2005 with the
information of statistical properties, DNDII2003,2005, DNDVI2003,2005

and DEVI2003,2005 are separately presented in Panels (b)–(d).
The histograms of DVIs2003 (Fig. 5(a), dotted lines) had

approximately a symmetric bell-shape distribution, with the
mean (m2003 in Fig. 5(b)–(d), and DVIs2003 in Table 2) equal to 0
or approximately 0, as shown in Table 2. This pattern of DVIs2003

distribution was as expected because no large-scale natural
disturbance was observed during August 13 and September 14,
2003. However, DVIs distributions in 2005 (Fig. 5(a), solid lines)
shift to the direction of VIs decreasing when compared with the
corresponding DVIs distributions in 2003. This reflects the impact
of Hurricane Katrina, the only major large-scale disturbance
observed in this region within the same period in 2005.

The shift amplitude was directly related to the sensitivity of
these indices to hurricane impacts. The shift amplitude of DNDII
(0.17) was greater than those of DNDVI and DEVI, as shown in
Panels (b)–(d) and Table 2. The large shift amplitude of DNDII
means the number of pixels with decreased NDII after the
hurricane increased significantly, as shown in Panel (b). The shift
amplitude of DNDVI (0.06) was slightly greater than the one of
DEVI (0.04), but still insignificant when compared to the shift
amplitude of DNDII.

The statistical dispersion (IQR) of DVIs2005 (Table 2) indicated
the sensitivity of an indicator to the damage severity levels. The
large IQR of DNDII2005 (0.24) implied the number of large DNDII
values towards the right tail was greater than DNDVI and DEVI, so
DNDII was more sensitive to the damage severity than other
vegetation indices. The IQR of DNDII2003 (0.101) was similar to that
of DEVI2003 (0.090), however, the IQR of DNDII2005 (0.243) was
much wider than that of DEVI2005 (0.096). The IQR increase of
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DNDII between 2003 and 2005 was 0.142, while the IQR increase of
DNDVI and DEVI was insignificant (0.007 and 0.006, respectively).
Less than 1% of the valid DVIs2003 and DVIs2005 were larger than 0.4
except for DNDII2005, while more than 3% of the valid DNDII2005

values were larger than 0.4 (Table 2). This further supports the
finding that the effects of the hurricane not only shifted, but also
stretched the DNDII2005 distribution curve towards the positive
direction more than it affected the other DVIs distributions.

The damaged pixels identified by DNDII were 86.2% of the total
number of tree pixels within the major impacted region. This ratio
was higher than what DNDVI and DEVI detected (81.8% and 55.8%,
Fig. 8. Maps of forest damage levels (a) damage levels mapped by FIA, USDA Forest Servic

(e) damage level 2; and (f) damage level 3.
respectively). Although both DNDII and DNDVI could detect close
ratios of damaged forest pixels, DNDII had a more significant shift
amplitude and a much wider range of IQR than DNDVI.

The above statistical analysis indicated that DNDII could detect
hurricane-induced vegetation modification, in terms of total
damaged forest, better than DLAI, DFpar, DEVI and DNDVI. This
corroborated findings by visual inspection of DVIs maps of the
hurricane-impacted region (Fig. 4), and confirmed previous
findings that DNDII was a better indicator for detecting vegetation
modification. The distributions of DNDVI, DEVI and DNDII were
also analyzed for major forest types in this region, including
e (Clark et al., 2006); (b) general damage map; (c) damage levels; (d) damage level 1;



Fig. 9. The relationship of DNDII and the total damage severity. The dark grey dotted

line is a 1:1 line.

W. Wang et al. / Agricultural and Forest Meteorology 150 (2010) 122–132130
evergreen broadleaf forest, evergreen needle-leaf forest, deciduous
broadleaf forest and mixed forest. The distributions for four major
forest types had the same pattern as shown in Fig. 5.

4.2. Rapid assessment of post-hurricane forest damage

We developed a rapid post-hurricane forest damage assess-
ment algorithm that comprised seven steps (Fig. 6). In Step 1,
MODIS NBAR products that included at least 3 years of observa-
tions were checked to reject invalid or poor-quality observations
using accessory quality flags. Then, reflectance at 0.86 and 2.13-
mm channels was extracted and used to derive original NDII time
series (Eq. (3)). In Step 2, the quality of original NDII time series was
checked to eliminate anomalous high and low values, of which the
next observations immediately return to approximately the
previous values. The CLEAN algorithm was then used to estimate
missing data, including abnormal high or low values, missing
observations, and low quality observations. In Step 3, a Fourier
transform technique was used to decouple seasonal signals and
seasonally detrended disturbance signals, followed by Step 4, NDII
image differencing (Eq. (4)). The damage indicator DNDII2005 was
defined as the difference of seasonally detrended NDII pre- and
post-hurricane divided by the complete NDII pre-hurricane. The
damage indicator DNDII2005 was then rescaled to [0,1] to construct
damage severity in Step 5. The upper and lower limits for rescale
were decided by the statistical analysis of DNDII. For example, an
upper boundary 0.6 was selected, which covers 99.7% of valid
DNDII2005 in the case of Hurricane Katrina impacts. A value of 0.6
was then assigned to pixels with DNDII2005 greater than 0.6. The
lower boundary was the damage threshold, decided by the
distribution of DNDII2003, 2004, 2006, as elaborated in Section 3.3.
The damage severity was then stratified in Step 6 to identify the
impacted areas by damage levels, which were determined through
statistical analysis. In Step 7, damage areas were identified based
on the spatial density and continuity of damaged forest pixels at
individual damage levels.

This rapid assessment algorithm was applied to estimate forest
damage after Hurricane Katrina. The forest damage severity map
(Fig. 7) is the product of the algorithm at Step 5. It illustrates the
distribution of forest damage on a scale of [0,1] at the pixel level.
The pixels colored in light grey show no damage, while the other
pixels colored in gradual blue, green, yellow and red represent
damage in degrees from light to most severe. Although this map
provided detailed damage information at the nominal 1 km2 per
pixel level, forest managers may need more general information to
manage post-hurricane hazard relief activities.

A forest damage level map (Fig. 8(b)) can serve such a purpose.
Fig. 8(a) is the distribution of forest damage levels estimated by the
USDA Forest Service (Clark et al., 2006), where four levels were
identified. Fig. 8(c) is the distribution of forest damage levels at the
pixel level, derived from Step 6 of the rapid assessment algorithm.
For the case of post-hurricane Katrina assessment, three levels
were selected at first, including light (Level 1), moderate (Level 2)
and severe (Level 3) damage, as shown in Fig. 8(c). Pixels without
damage were in green, and those with land cover type other than
forest were masked in grey. Pixels in the same damage level were
mapped separately, as shown in Fig. 8(d) (light damage, orange),
Fig. 8(e) (moderate damage, red) and Fig. 8(f) (severe damage, dark
red). Based on the density and continuity of individual damage
level maps, Fig. 8(b), a map of general damage levels was
generated. The light damage level shown in Fig. 8(d) was separated
into two levels, including light damage (orange belt in Fig. 8(b))
and scattered light damage (grey area with orange dots in
Fig. 8(b)). Therefore, the general damage severity map had a total
of four levels, i.e. scattered light, light, moderate and severe.
Compared with Fig. 8(a), the area combining severely and
moderately damage areas in Fig. 8(b) was similar to the severely
damage area estimated by the USDA Forest Service. The rapid
assessment algorithm described in this paper was able to
distinguish a new category of severity that represented the most
severely damage area. The area with light damage in Fig. 8(b) was
similar to the area with moderate damage in Fig. 8(a). The area in
Fig. 8(b) with scattered light damage was comparable to the area
combining the light and scatted light damage in Fig. 8(a).

5. Validation

The rapid assessment algorithm was validated using the ground
truth data investigated by the USDA Forest Service, FIA. The forest
damage estimated in the ground inventory for each plot was
represented as the percentage of basal area that suffered no, light,
moderate or severe damage. To validate the rapid assessment
algorithm, the ground damage data were converted to the total
damage severity (DS) for each plot using:

DSi ¼ ai � biðg1 � Li þ g2 �Mi þ g3 � Si þ g4 � NiÞ (5)

where DSi stands for the total damage severity for the ith plot. The
ai is a tree size factor for the ith plot (Eq. (6)),

ai ¼
ðmean tree DBH at ith plotÞ
ðmean tree DBH of all plotsÞ (6)

in which, DBH stands for the stem diameter at breast height. The bi

represents the effect of plot density for the ith plot (Eq. (7)),

bi ¼
ðtree density at ith plotÞ

ðmaximum tree density of all plotsÞ (7)

The constants g1, g2, g3, and g4, are weight factors that measure the
relative contribution of the four damage categories to the total
damage severity. Li, Mi, Si and Ni are the percentage of basal area
that suffered no, light, moderate or severe damage for the ith plot,
respectively.

Using Eqs. (5)–(7), the total damage severity for 54 plots was
derived. The DNDII2005 at these plots was retrieved using the
nearest neighbor method. Despite the coarse damage categories
used in the ground inventory, the scatter plot (Fig. 9) still showed a
linear relationship between DNDII2005 and the total damage
severity. This indicates that DNDII can quantitatively measure the
damage severity of the hurricane-impacted forest region based on
a strong linear relationship. The linear fitting line was y = a + bx,
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where a = �0.01, b = 1.06, r2 = 0.79, SD (standard deviation) = 0.03,
p-value < 0.0001.

6. Conclusions

This study has developed a new approach for identifying forest
regions impacted by hurricanes, and estimating damage severity.
Using this approach, we have identified the impacted region and
quantified the severity of forest damage post-Hurricane Katrina.
The statistical analysis and comparison with the damage severity
estimated by the USDA Forest Service revealed that DNDII was an
optimal indicator for detecting hurricane-induced forest damage
out of five commonly used vegetation indices, including NDVI, EVI,
NDII, LAI and Fpar. Validation of this rapid assessment algorithm,
compared with field measurements in the De Soto NF, showed a
linear relationship between DNDII and the total damage severity
with r2 = 0.79 and p-value < 0.0001.

This study has shown that hurricane-induced forest damage
severity can be quantified from satellite observed DNDII time
series. However, DNDII presents primarily the change in total leaf
water content in the forest canopy. The change of total
chlorophyll content carried by the visible spectra is not
considered in this algorithm. To improve the accuracy of this
approach, an indicator that can integrate changes caused by total
canopy chlorophyll and water content variations still needs to be
investigated. The normalized damage severity (Fig. 7) represents
the relative degrees of damage for a forest damage event. It is not
suitable for comparison among various cases. However, the
damage indicator DNDII, along with the forest type information,
can be used to construct a standard damage severity scale for
cross-case analysis. Additionally, the algorithm should be further
validated by application to other areas to determine if it can be
used in other vegetation types with dissimilar levels of damage.
Because our damage thresholds were determined from the
statistical properties of the data from the De Soto National Forest,
it is likely that the thresholds in other forests would be different;
such improvements could extend this approach to other post-
disturbance assessments involving impacts on forest canopies
such as insect or disease outbreaks or severe wildfire. The ability
to assess degrees of damage, and not just mortality, would be
beneficial in any schemes to compensate landowners for
providing ecosystem services such as payments for carbon
sequestration (Patenaude et al., 2005), for example Reduced
Emissions from Deforestation and Degradation (REDD; see Zarin
et al., 2009). This would benefit government decision processes
by providing objective evidence for verifying post-hurricane
compensation claims. For example, the European Union com-
pensates member states for large-scale damage from wind and
wildfire, and insurance schemes have been proposed to
compensate individual landowners (Holecy and Hanewinkel,
2006). Providing that the MODIS NBAR product is available every
8 days, this algorithm is able to evaluate post-hurricane forest
damage within a few weeks of an event.
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